Exercise Sheet 11

Discussed on 07.07.2021

Problem 1. Let k be an algebraically closed field and C a proper smooth connected curve over k. We will assume that the relative Picard functor $\mathrm{Pic}_{C / k}^{0}$ is representable by a k-scheme which is locally of finite type. The goal is to show that $\mathrm{Pic}_{C / k}^{0}$ is an abelian variety of dimension $g:=g(C)$.
(a) Let X be a scheme. Show that there is a canonical bijection

$$
\operatorname{Pic}(X) \cong H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)
$$

Hint: Use without proof that

$$
H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)=\underset{\mathfrak{U}}{\lim } \check{H}^{1}\left(\mathfrak{U}, \mathcal{O}_{X}^{\times}\right)
$$

Here the filtered colimit on the right-hand side is taken over all open coverings $\mathfrak{U}: X=\bigcup_{i} U_{i}$ of X and $\check{H}^{1}\left(\mathfrak{U}, \mathcal{O}_{X}^{\times}\right)$denotes Čech cohomology (see Stacks Section 01ED). Show that $\check{H}^{1}\left(\mathfrak{U}, \mathcal{O}_{X}^{\times}\right)$ is in canonical bijection to the set of line bundles \mathcal{L} on X such that $\left.\mathcal{L}\right|_{U_{i}} \cong \mathcal{O}_{U_{i}}$ for all i.
(b) Show that the tangent space of $\operatorname{Pic}_{C / k}^{0}$ at 0 equals $H^{1}\left(C, \mathcal{O}_{C}\right)$ and thus has dimension g.

Hint: Recall that the tangent space of $\operatorname{Pic}_{C / k}^{0}$ is computed as $\operatorname{ker}\left(\operatorname{Pic}_{C / k}^{0}(k[\epsilon]) \rightarrow \operatorname{Pic}_{C / k}^{0}(k)\right)$, where $k[\epsilon]:=k[T] / T^{2}$. Note that $C_{k[\epsilon]}$ has the same topological space as C, but has structure sheaf $\mathcal{O}_{C_{k[\epsilon]}}=\mathcal{O}_{C}[\epsilon]$. Now consider the cohomology sequence associated to the exact sequence of sheaves $1 \rightarrow 1+\epsilon \mathcal{O}_{C} \rightarrow \mathcal{O}_{C}[\epsilon]^{\times} \rightarrow \mathcal{O}_{C}^{\times} \rightarrow 1$ on $|C|$.
(c) Show that $\operatorname{Pic}_{C / k}^{0}$ is smooth over k.

Hint: Recall the lifting criterion for smoothness (sheet 2): It is enough to show that for every k-algebra A with ideal $I \subset A$ such that $I^{2}=0$, the map $\operatorname{Pic}_{C / k}^{0}(A) \rightarrow \operatorname{Pic}_{C / k}^{0}(A / I)$ is surjective. To show this, argue similar to (b): Note that C_{A} and $C_{A / I}$ have the same topological space and there is a short exact sequence $1 \rightarrow 1+f^{*} I \rightarrow \mathcal{O}_{A} \rightarrow \mathcal{O}_{A / I} \rightarrow 1$ of sheaves on $\left|C_{A}\right|$, where $f: C_{A} \rightarrow \operatorname{Spec} A$ is the projection. Look at the associated long exact sequence of cohomology and use that $H^{2}\left(C_{A}, f^{*} I\right)=0$ because C is a curve.
(d) Fix a point $P \in C(k)$. Show that there is a map $\varphi: C^{g} \rightarrow \operatorname{Pic}_{C / k}^{0}$ which on k-points is given by $\left(P_{1}, \ldots, P_{g}\right) \mapsto \mathcal{O}_{C}\left(\left[P_{1}\right]+\cdots+\left[P_{g}\right]-g[P]\right)$.
(e) Prove that the map φ is surjective. Deduce that $\mathrm{Pic}_{C / k}^{0}$ is proper and connected.

Hint: For the first part, you need to show that every line bundle \mathcal{L} on C of degree 0 is of the form $\mathcal{O}_{C}\left(\left[P_{1}\right]+\cdots+\left[P_{g}\right]-g[P]\right)$ for some $P_{1}, \ldots, P_{g} \in C(k)$. Apply Riemann-Roch to $\mathcal{L} \otimes \mathcal{O}_{C}(g[P])$ to deduce that there is a non-zero map $\mathcal{O}_{C} \rightarrow \mathcal{L} \otimes \mathcal{O}_{C}(g[P])$; then look at the quotient of that map.

